Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Dairy Sci ; 106(12): 8746-8757, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37678783

ABSTRACT

The objective of this study was to compare cashew nutshell extract (CNSE) to monensin and evaluate changes in in vitro mixed ruminal microorganism fermentation, nutrient digestibility, and microbial nitrogen outflow. Treatments were randomly assigned to 8 fermenters in a replicated 4 × 4 Latin square design with 4 experimental periods of 10 d (7 d for diet adaptation and 3 d for sample collection). Basal diets contained 43.5:56.5 forage: concentrate ratio and each fermenter was fed 106 g of DM/d divided equally between 2 feeding times. Treatments were control (CON, basal diet without additives), 2.5 µM monensin (MON), 0.1 mg CNSE granule/g DM (CNSE100), and 0.2 mg CNSE granule/g DM (CNSE200). On d 8 to10, samples were collected for pH, lactate, NH3-N, volatile fatty acids (VFA), mixed protozoa counts, organic matter (OM), and neutral detergent fiber (NDF) digestibility. Data were analyzed with the GLIMMIX procedure of SAS. Orthogonal contrasts were used to test the effects of (1) ADD (CON vs. MON, CNSE100, and CNSE200); (2) MCN (MON vs. CNSE100 and CNSE200); and (3) DOSE (CNSE100 vs. CNSE200). We observed that butyrate concentration in all treatments was lower compared with CON and the concentration for MON was lower compared with CNSE treatments. Protozoal population in all treatments was lower compared with CON. No effects were observed for pH, lactate, NH3-N, total VFA, OM, or N utilization. Within the 24-h pool, protozoal generation time, tended to be lower, while NDF digestibility tended to be greater in response to all additives. Furthermore, the microbial N flow, and the efficiency of N use tended to be lower for the monensin treatment compared with CNSE treatments. Overall, our results showed that both monensin and CNSE decreased butyrate synthesis and protozoal populations, while not affecting OM digestibility and tended to increase NDF digestibility; however, such effects are greater with monensin than CNSE nutshell.


Subject(s)
Anacardium , Monensin , Animals , Monensin/pharmacology , Monensin/metabolism , Fermentation , Rumen/metabolism , Digestion , Diet , Fatty Acids, Volatile/metabolism , Butyrates/metabolism , Lactates/metabolism , Animal Feed/analysis
2.
J Dairy Sci ; 106(2): 990-1001, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36526456

ABSTRACT

The objective of this study was to evaluate the effects of dietary replacement of magnesium oxide (MgO) with calcium-magnesium hydroxide [CaMg(OH)2] and its interaction with ruminal buffer (sodium sesquicarbonate) supplementation on production, Ca and Mg balance, and overall physiological response of mid-lactation Holstein dairy cows. Sixty cows averaging 40.5 ± 7.0 kg of milk/d were used. Treatments were assigned following a 2 × 2 factorial arrangement: (1) MgO, (2) MgO + buffer, (3) CaMg(OH)2, or (4) CaMg(OH)2 + buffer. Diets were formulated to have 16.5% of crude protein, 1.82 Mcal/kg of net energy for lactation, 0.67% Ca, 0.39% P, and 0.25% Mg, all on a dry matter (DM) basis. Treatments were individually top dressed. Milk production, composition, and DM intake were evaluated. A subsample of 20 cows were randomly selected for the evaluation of Ca and Mg balance, blood gases, and electrolytes. Ruminal fluid was also collected for evaluation of pH and Ca and Mg solubility. Effects of Mg source, buffer, and the interaction Mg source × buffer were analyzed through orthogonal contrasts. An interaction of Mg source × buffer was found for DM intake and feed efficiency, in which cows fed CaMg(OH)2 had a similar feed efficiency regardless of ruminal buffer inclusion; however, when cows were fed MgO, the inclusion of buffer reduced feed efficiency. No effects on body weight and milk yield were observed. Buffer addition tended to increase the concentrations of fat, protein, and solids-not-fat, without affecting the yields of these milk components. Magnesium source and buffer did not affect ruminal fluid, blood, urine, or fecal pH; however, buffer supplementation increased urinary pH. Treatment with CaMg(OH)2 increased blood concentration of HCO3-, total CO2, and base excess compared with cows fed MgO. No differences were observed in the ruminal solubility of Ca and Mg or on milk or urinary Ca and Mg excretion. Greater plasma Mg concentration was observed for animals fed MgO compared with cows fed CaMg(OH)2; however, both sources were above the threshold recommended in the literature for dairy cows. Also, a reduction in fecal Mg excretion was observed in animals fed CaMg(OH)2. In summary, we provide evidence that CaMg(OH)2 could replace MgO without affecting performance, overall physiological response, or Ca and Mg balance of mid-lactating dairy Holstein cows.


Subject(s)
Lactation , Magnesium , Female , Cattle , Animals , Lactation/physiology , Magnesium/analysis , Calcium/metabolism , Magnesium Oxide/pharmacology , Milk/chemistry , Diet/veterinary , Calcium, Dietary/analysis , Rumen/metabolism , Animal Feed/analysis , Digestion
3.
J Dairy Sci ; 106(2): 1002-1012, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36543642

ABSTRACT

The objective of this study was to determine the effects of including exogenous amylolytic or fibrolytic enzymes in a diet for high-producing dairy cows on in vitro ruminal fermentation. Eight dual-flow continuous-culture fermentors were used in a replicated 4 × 4 Latin square. The treatments were control (CON), a xylanase and glucanase mixture (T1), an α-amylase mixture (T2), or a xylanase, glucanase, and α-amylase mixture (T3). Treatments were included at a rate of 0.008% of diet dry matter (DM) for T1 and T2 and at 0.02% for T3. All treatments replaced the equivalent amount of soybean meal in the diet compared with CON. All diets were balanced to have the same nutrient composition [30.2% neutral detergent fiber (NDF), 16.1% crude protein (CP), and 30% starch; DM basis], and fermentors were fed 106 g/d divided into 2 feedings. At each feeding, T2 was pipetted into the respective fermentor and an equivalent amount of deionized water was added to each fermentor to eliminate potential variation. Experimental periods were 10 d (7 d for adaptation and 3 d for sample collection). Composite samples of daily effluent were collected and analyzed for volatile fatty acids (VFA), NH3-N, and lactate concentrations, degradability of DM, organic matter, NDF, CP, and starch, and flow and metabolism of N. Samples of fermentor contents were collected from each fermentor at 0, 1, 2, 4, 6, and 8 h after feeding to determine kinetics of pH, NH3-N, lactate, and VFA concentrations over time. All data were analyzed using PROC GLIMMIX of SAS (SAS Institute Inc.), and the repeated variable of time was included for kinetics measurements. Treatment did not affect mean pH, degradability, N flow and metabolism, or the concentrations of VFA, NH3-N, or lactate in the effluent samples. Treatment did not affect pH, acetate:propionate ratio, or the concentrations of lactate, NH3-N, total VFA, acetate, propionate, butyrate, isobutyrate, valerate, or caproate. However, the concentration of total VFA tended to change at each time point depending upon the treatment, and T2 tended to have a greater proportion of 2-methylbutyrate and isovalerate than CON, T1, or T3. As 2-methylbutyrate and isovalerate are branched-chain VFA that are synthesized from branched-chain amino acids, T2 may have an increased fermentation of branched-chain amino acids or decreased uptake by fibrolytic microorganisms. Although we did not observe changes in N metabolism due to the enzymes, there could be changes in microbial populations that utilize branched-chain VFA. Overall, the tested enzymes did not improve in vitro ruminal fermentation in the diet of high-producing dairy cows.


Subject(s)
Lactation , Propionates , Animals , Cattle , Female , alpha-Amylases/metabolism , Animal Feed/analysis , Diet/veterinary , Digestion , Fatty Acids, Volatile/metabolism , Fermentation , Lactates/metabolism , Propionates/metabolism , Rumen/metabolism , Starch/metabolism
4.
Transl Anim Sci ; 6(4): txac157, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36568899

ABSTRACT

Our objective was to evaluate the effects of bacteria (Lactobacillus animalis, Propionibacterium freudenreichii, Bacillus lichenformis, Bacillus subtilis, and Enterococcus faecium), enzymes (amylase, hemicellulose, and xylanase), and yeast as additives on the ruminal microbiome. We hypothesized that inclusion of bacteria, enzymes, and yeast would impact butyric bacterial populations. Eight fermenters were arranged in a duplicated 4 × 4 Latin square with the following treatments: 1) control without additives (CTRL); 2) bacterial culture and enzyme blend (EB); 3) bacterial culture and enzyme blend with a live yeast and yeast culture blend (EBY); and 4) double dose of bacterial culture and enzyme blend and the yeast products blend (2X). We conducted four fermentation periods of 10 d each, with the last 3 d for collection of samples. Overall, 64 solid and liquid samples were analyzed by amplification of the V4 region of bacterial 16S rRNA. Data were analyzed with R and SAS. The following orthogonal contrasts were used: 1) ADD-the control compared to all treatments with additives (CTRL vs. EB, EBY, and 2X); 2) YEAST-treatment without yeast compared to those with yeast (EB vs. EBY and 2X); and 3) DOSE-the single dose of enzymes, bacteria, and yeast compared to the doubled dose (EBY vs. 2X). Family Prevotellaceae was more abundant when additives were added (ADD). Additives (ADD) also increased relative abundance of Prevotellaceae Ga6A1 and YAB2003 in solid fraction, and of Prevotellaceae Ga6A1 and two members of Lachnospiracea family in liquid fraction. Yeast (YEAST) decreased relative abundance of Succinivibrionaceae UCG-001 and increased abundance of Ruminococcus and Prevotellaceae UCG-003 in solid fraction. Doubling the dose of enzymes and microbial additives (DOSE) decreased the abundance of Succiniclasticum in solid fraction and Selenomonadaceae in the liquid. Molar proportion of butyrate was highly correlated with abundance of Prevotellaceae Ga6A1 in solid (r = 0.68) and liquid fraction (r = 0.79), and with Unclassified Lachnospiraceae in liquid (r = 0.70). Our results demonstrate that YEAST decreases abundance of succinate synthesizing bacteria, while DOSE decreases abundance of bacteria that metabolize succinate into propionate. Combined bacteria, enzymes, and yeast increase the relative abundance of specific genera primarily within the Prevotellaceae family, which may explain the increase in butyrate molar proportion observed with ADD.

5.
J Dairy Sci ; 105(5): 4128-4143, 2022 May.
Article in English | MEDLINE | ID: mdl-35282921

ABSTRACT

Our objective was to evaluate the effects of unprotected choline chloride (Cho) on the ruminal microbiome at 2 dietary neutral detergent fiber (NDF) concentrations. We hypothesized that the effects of Cho on ruminal bacterial populations would depend on NDF. Eight dual-flow continuous-culture fermentors were arranged in a duplicated 4 × 4 Latin square as a 2 × 2 factorial with the following treatments: (1) 30% NDF-control (30% NDF diet, no supplemental choline); (2) 30% NDF-Cho (30% NDF diet plus 1.9 g of choline ion per kg of dry matter); (3) 40% NDF-control (40% NDF diet, no supplemental choline); and (4) 40% NDF-Cho (40% NDF diet plus 1.9 g of choline ion per kg of dry matter). We did 4 fermentation periods of 10 d each and used the last 3 d for collection of samples of solid and liquid digesta effluents for DNA extraction. Overall, 32 solid and 32 liquid samples were analyzed by amplification of the V4 variable region of bacterial 16S rRNA. Data were analyzed with R (R Project for Statistical Computing) and SAS (SAS Institute Inc.) to determine effects of Cho, NDF, and NDF × Cho on taxa relative abundance. The correlation of propionate molar proportion with taxa relative abundance was also analyzed. At the phylum level, relative abundance of Firmicutes in the liquid fraction tended to be greater when Cho was supplemented with a 30% NDF diet. At the order level, Cho increased Coriobacteriales in solid fraction and decreased Fibrobacterales in liquid fraction. Moreover, Cho decreased abundance of Clostridiales and increased Selenomonadales in the solid fraction, only with the 30% NDF diet. For genera, lower abundance of Pseudobutyrivibrio resulted from Cho in solid and liquid fractions. Greater abundance of Succinivibrio in solid and Selenomonas and Selenomonas 1 in liquid resulted from Cho with the 30% NDF diet. Propionate molar proportion was positively correlated with relative abundance of order Selenomonadales in solid and liquid fractions, and with genus Succinivibrio in solid and genera Selenomonas and Selenomonas 1 in liquid. Our results indicate that Cho primarily decreases abundance of bacteria involved in fiber degradation and increases abundance of bacteria mainly involved in nonstructural carbohydrate degradation and synthesis of propionate, particularly when a diet with 30% NDF is provided.


Subject(s)
Microbiota , Rumen , Animal Feed/analysis , Animals , Bacteria , Choline/metabolism , Detergents/metabolism , Diet/veterinary , Dietary Fiber/metabolism , Digestion , Fermentation , Propionates/metabolism , RNA, Ribosomal, 16S/metabolism , Rumen/metabolism
6.
J Dairy Sci ; 105(4): 3090-3101, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35123778

ABSTRACT

The objective of this study was to evaluate the effects of replacing magnesium oxide (MgO) with calcium-magnesium carbonate [CaMg(CO3)2] on ruminal fermentation with or without the addition of sodium bicarbonate (NaHCO3). Eight fermentors of a dual-flow continuous-culture system were distributed in a replicated (2) 4 × 4 Latin square design in a 2 × 2 factorial arrangement of treatments (magnesium sources × NaHCO3). The treatments tested were 0.21% MgO [MgO; dry matter (DM) basis; 144.8 mEq of dietary cation-anion difference (DCAD)]; 0.21% MgO + 0.50% NaHCO3 (MgO+NaHCO3; DM basis; 205.6 mEq of DCAD); 1.00% CaMg(CO3)2 [CaMg(CO3)2; DM basis; 144.8 mEq of DCAD]; and 1.00% CaMg(CO3)2 + 0.50% NaHCO3 [CaMg(CO3)2+NaHCO3; DM basis; 205.6 mEq of DCAD]. Diets were formulated to have a total of 0.28% of Mg (DM basis). The experiment consisted of 40 d, which was divided into 4 periods of 10 d each, where 7 d were used for adaptation and 3 d for sampling to determine pH, volatile fatty acids (VFA), ammonia (NH3-N), lactate, mineral solubility, N metabolism, and nutrient digestibility. The effects of Mg source [MgO vs. CaMg(CO3)2], NaHCO3 (with vs. without), and the interaction were tested with the MIXED procedure of SAS version 9.4 (SAS Institute). There was no Mg source × NaHCO3 interaction in the pH variables and mineral solubility, and Mg sources evaluated did not affect the variables related to ruminal pH and solubility of Mg. On the other hand, the inclusion of NaHCO3 increased the pH daily average, independent of Mg source, which led to a reduced time that pH was below 5.8 and decreased area under the curve. Total VFA and lactate concentration were similar among treatments regardless of NaHCO3 and Mg source; however, the molar proportion of isobutyrate and NH3-N concentration were lower in diets with CaMg(CO3)2 compared with MgO. Moreover, NaHCO3 inclusion increased NH3-N, total daily NH3-N flow, isobutyrate concentration, and acid detergent fiber digestibility. Our results showed that CaMg(CO3)2 leads to a lower NH3-N concentration and isobutyrate proportion. Therefore, because most of the tested variables were not significantly different between MgO and CaMg(CO3)2 when combined or not with NaHCO3, CaMg(CO3)2 can be a viable alternative source to replace MgO in dairy cow diets without affecting mineral solubility, ruminal pH, nutrient digestibility, total VFA, and the main ruminal VFA. Although Mg sources are known to have an alkalizing effect, NaHCO3 inclusion in diets with Mg supplementation allowed an increase in ruminal pH, as well as an increase in isobutyrate and NH3-N flow.


Subject(s)
Magnesium , Rumen , Animal Feed/analysis , Animals , Calcium/metabolism , Calcium Carbonate , Cattle , Diet/veterinary , Digestion , Female , Fermentation , Magnesium/metabolism , Magnesium Oxide/pharmacology , Nutrients , Rumen/metabolism , Sodium Bicarbonate/pharmacology
7.
J Dairy Sci ; 105(3): 2242-2255, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34998552

ABSTRACT

The objective of this study was to evaluate ruminal microbiome changes associated with feeding Lactobacillus plantarum GB-LP1 as direct-fed microbials (DFM) in high-producing dairy cow diets. A dual-flow continuous culture system was used in a replicated 4 × 4 Latin square design. A basal diet was formulated to meet the requirements of a cow producing 45 kg of milk per day (16% crude protein and 28% starch). There were 4 experimental treatments: the basal diet without any DFM (CTRL); a mixture of Lactobacillus acidophilus, 1 × 109 cfu/g, and Propionibacterium freudenreichii, 2 × 109 cfu/g [MLP = 0.01% of diet dry matter (DM)]; and 2 different levels of L. plantarum, 1.35 × 109 cfu/g (L1 = 0.05% and L2 = 0.10% of diet DM). Bacterial samples were collected from the fluid and particulate effluents before feeding and at 2, 4, 6, and 8 h after feeding; a composite of all time points was made for each fermentor within their respective fractionations. Bacterial community composition was analyzed through sequencing the V4 region of the 16S rRNA gene using the Illumina MiSeq platform. Sequenced data were analyzed on DADA2, and statistical analyses were performed in R (RStudio 3.0.1, https://www.r-project.org/) and SAS 9.4 (SAS Institute Inc.); orthogonal contrasts were used to compare treatments. Different than in other fermentation scenarios (e.g., silage or beef cattle high-grain diets), treatments did not affect pH or lactic acid concentration. Effects were mainly from overall DFM inclusion, and they were mostly observed in the fluid phase. The relative abundance of the phylum Firmicutes, family Lachnospiraceae, and 6 genera decreased with DFM inclusion, with emphasis on Butyrivibrio_2, Saccharofermentans, and Ruminococcus_1 that are fibrolytic and may display peptidase activity during fermentation. Lachnospiraceae_AC2044_group and Lachnospiraceae_XPB1014_group also decreased in the fluid phase, and their relative abundances were positively correlated with NH3-N daily outflow from the fermentors. Specific effects of MLP and L. plantarum were mostly in specific bacteria associated with proteolytic and fibrolytic functions in the rumen. These findings help to explain why, in the previous results from this study, DFM inclusion decreased NH3-N concentration without altering pH and lactic acid concentration.


Subject(s)
Lactobacillales , Microbiota , Adenosine Deaminase/analysis , Adenosine Deaminase/metabolism , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Digestion , Female , Fermentation , Intercellular Signaling Peptides and Proteins , Lactation , Lactic Acid/metabolism , Lactobacillales/metabolism , Milk/chemistry , RNA, Ribosomal, 16S/analysis , Rumen/metabolism
8.
Transl Anim Sci ; 5(3): txab087, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34258516

ABSTRACT

Shrink, accuracy, and precision of ingredient weighing are critical factors of efficiency in TMR-fed dairy systems. Those factors have been evaluated for major feeds; however, we are not aware of any reports for mineral supplement. Farms commonly mix mineral supplement with other low-inclusion ingredients into a premix which is used later as a single ingredient for TMR formulation. Our objectives were to evaluate shrink, weighing accuracy, and weighing precision of mineral supplement during premix formulation, and variation in concentration of minerals in mineral supplement and TMR, in five large dairies in the Western United States. We used the automated weight-tracking system at each farm to account for all the mineral supplement loaded into the mixing-wagon and collected samples of mineral supplement and TMR from time of mineral supplement delivery at the farm until 100% of it was consumed. Mean, standard deviation and coefficient of variation (CV) for each variable were calculated with SAS 9.4. Average shrink was estimated at 2.0% for mineral supplement during storage and loading, ranging from 0.37% to 3.25%. Mineral supplement weighing deviation from the targeted amount was 1.54% on average for the five dairies with a 95% CV. Mineral composition of mineral supplements averaged 11.3%, 0.27%, and 3.16% for Ca, P, and Mg, and 215, 881, and 1533 ppm for Cu, Mn, and Zn, respectively. Mineral compositions in TMR averaged 0.84%, 0.41%, and 0.37% for Ca, P, and Mg, respectively; and 15.1, 71, and 94.5 ppm for Cu, Mn, and Zn, respectively. The CV of all minerals except Ca, were larger for mineral supplement than TMR, and with the exception of P in mineral supplement, CV of trace minerals were larger than CV values for macro minerals. Our shrink estimates for mineral supplement represent an initial approximation to this issue. Results of our weighing deviation analysis suggest some room for improvement on the precision of weighing mineral supplement at the time when premix is prepared at the farm, which could improve consistency in chemical composition of the premix and consequently reduce the variation (CV values) of mineral concentrations in TMR.

9.
J Dairy Sci ; 104(7): 7820-7829, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33896634

ABSTRACT

Magnesium oxide (MgO) is the most common supplemental source of Mg for dairy cows and a proven ruminal alkalizer when supplemented above NRC (2001) recommendations. However, overfeeding MgO may increase feeding costs, whereas the effects of alternative sources of Mg on ruminal fermentation are not well known. Moreover, it is still unclear if Mg supplementation influences the effects of bicarbonate-based buffers on ruminal fermentation. We aimed to evaluate the effect of Mg source on ruminal fermentation with diets formulated to a final concentration of 0.25% Mg, and to determine if the effect of sodium sesquicarbonate as a buffer varies with the source of Mg. We used 8 fermentors in a duplicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments, by combining 2 factors: (1) Mg source: using either MgO or an alternative source consisting of a blend of CaMg(OH)4 and CaMg(CO3)2 (BLN) and (2) sodium sesquicarbonate buffer inclusion, at 0 or 0.6% of dry matter intake. Based on preliminary tests of reactivity, we hypothesized that BLN plus buffer would allow for greater ruminal pH, acetate molar proportion, and NDF digestibility than diets with MgO or without buffer. Four 10-d periods were completed, where the last 3 d were used for pH measurements and collection of samples for volatile fatty acids (VFA), ammonia (NH3-N), Mg solubility, N metabolism, and nutrient digestibility. Effects of Mg source (source), sodium sesquicarbonate inclusion (buffer), and their interaction (source × buffer) were tested with the MIXED procedure of SAS (SAS Institute Inc.). We did not find an effect of Mg source on ruminal fermentation variables; however, concentration of soluble Mg in ruminal fluid was greater for MgO compared with BLN. On the other hand, buffer supplementation increased average ruminal pH, acetate molar proportion, and branched-chain VFA molar proportion; tended to increase NDF digestibility; and decreased both area under the curve and time below pH 6.0. An interaction of source × buffer was found for propionate, butyrate, and NH3-N, the first one decreasing and the 2 others increasing only when buffer was supplemented to the BLN diet. Our results indicate that supplementing Mg with either MgO or BLN promotes similar ruminal fermentation in diets with total concentration of 0.25% Mg. Further evaluations are needed to assess Mg availability and animal performance in dairy cows fed BLN.


Subject(s)
Magnesium , Rumen , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Digestion , Female , Fermentation , Magnesium/metabolism , Rumen/metabolism
10.
Transl Anim Sci ; 5(2): txab026, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33860153

ABSTRACT

Bacterial cultures, enzymes, and yeast-derived feed additives are often included in commercial dairy rations due to their effects on ruminal fermentation. However, the effects of these additives when fed together are not well understood. The objective of this study was to evaluate the changes in ruminal fermentation when a dairy ration is supplemented with combinations of bacterial probiotics, enzymes and yeast. Our hypotheses were that ruminal fermentation would be altered, indicated through changes in volatile fatty acid profile and nutrient digestibility, with the inclusion of (1) an additive, (2) yeast, and (3) increasing additive doses. Treatments were randomly assigned to 8 fermenters in a replicated 4 × 4 Latin square with four 10 d experimental periods, consisting of 7 d for diet adaptation and 3 d for sample collection. Basal diets contained 52:48 forage:concentrate and fermenters were fed 106 g of dry matter per day divided equally between two feeding times. Treatments were: control (CTRL, without additives); bacterial culture/enzyme blend (EB, 1.7 mg/d); bacterial culture/enzyme blend with a blend of live yeast and yeast culture (EBY, 49.76 mg/d); and a double dose of the EBY treatment (2×, 99.53 mg/d). The bacterial culture/enzyme blend contained five strains of probiotics (Lactobacillus animalis, Propionibacterium freudenreichii, Bacillus lichenformis, Bacillus subtilis, and Enterococcus faecium) and three enzymes (amylase, hemicellulase, and xylanase). On d 8-10, samples were collected for pH, redox, volatile fatty acids, lactate, ammonia N, and digestibility measurements. Statistical analysis was performed using the GLIMMIX procedure of SAS. Repeated measures were used for pH, redox, VFA, NH3-N, and lactate kinetics data. Orthogonal contrasts were used to test the effect of (1) additives, ADD (CTRL vs. EB, EBY, and 2X); (2) yeast, YEAST (EB vs. EBY, and 2X); and (3) dose, DOSE (EBY vs. 2X). No effects (P > 0.05) were observed for pH, redox, NH3-N, acetate, isobutyrate, valerate, total VFA, acetate:propionate, nutrient digestibility or N utilization. Within the 24 h pool, the molar proportion of butyrate increased (P = 0.03) with the inclusion of additives when compared to the control while the molar proportion of propionate tended to decrease (P = 0.07). In conclusion, the inclusion of bacterial cultures, enzymes and yeast in the diet increased butyrate concentration; but did not result in major changes in ruminal fermentation.

11.
Transl Anim Sci ; 5(1): txaa229, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33506181

ABSTRACT

Supplemental sources of Mg can also aid in ruminal pH regulation due to their alkaline properties. Magnesium oxide (MgO) is the most common source of Mg for ruminants and can help controlling ruminal pH; however, the alkaline potential of other sources of Mg has not been evaluated. We aimed to evaluate the inclusion of calcium-magnesium carbonate (CaMg(CO3)2) and calcium-magnesium hydroxide (CaMg(OH)4) alone or in combination as supplemental sources of Mg in corn silage-based diets and its impact on ruminal microbial fermentation. We hypothesized that inclusion of CaMg(OH)4 would allow for ruminal fermentation conditions resulting in a greater pH compared to the inclusion of CaMg(CO3)2. Four treatments were defined by the supplemental source of Mg in the diet: 1) Control (100% MgO, plus sodium sesquicarbonate as a buffer); 2) CO3 [100% CaMg(CO3)2]; 3) OH [100% CaMg(OH)4]; and 4) CO3/OH [50% Mg from CaMg(CO3)2, 50% Mg from CaMg(OH)4]. Nutrient concentration was held constant across treatments (16% CP, 30% NDF, 1.66 Mcal NEl/kg, 0.67% Ca, and 0.21% Mg). Four fermenters were used in a 4 × 4 Latin square design with four periods of 10 d each. Samples were collected for analyses of nutrient digestibility, soluble Mg, VFA, and NH3, while pH was measured at 0, 1, 2, 4, 6, 8, and 10 h post morning feeding to estimate % time when pH was below 6 (pH-B6) and area under the pH curve for pH below 6.0 (pH-AUC). Bacteria pellets were harvested for 15N analysis and estimates of N metabolism. Treatment effects were analyzed with the mixed procedure of SAS, while effects of using either CaMg(CO3)2 or CaMg(OH)4 as Mg source in comparison to Control treatment were evaluated by orthogonal contrasts. Similar pH-related variables were observed for Control, OH, and CO3/OH treatments, which had smaller pH-AUC and pH-B6 than CO3 (P ≤ 0.01). Butyrate molar proportion was greater in Control and CO3/OH than in CO3 and OH (P = 0.04). Orthogonal contrasts showed lower flow of bacterial N (P = 0.04), lower butyrate molar proportion (P = 0.08) and greater pH-AUC (P = 0.05) for diets with CaMg(CO3)2 in comparison with the Control. Concentration of soluble Mg in ruminal fluid (P = 0.73) and nutrient digestibility (P ≥ 0.52) were similar across treatments. Under the conditions of this experiment, using CaMg(OH)4 alone or combined with CaMg(CO3)2 allowed for a less acidic ruminal fermentation pattern than a diet with only CaMg(CO3)2.

12.
J Dairy Sci ; 104(3): 2966-2978, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33358799

ABSTRACT

Choline is usually supplemented as ruminally protected choline chloride to prevent its degradation in the rumen, but the effects of unprotected choline on ruminal fermentation are unclear. Some research indicates a possible role of dietary fiber on microbial degradation of choline; therefore we aimed to evaluate the effects of unprotected choline chloride on ruminal fermentation and to investigate whether those effects depend on dietary neutral detergent fiber (NDF) concentration. Our hypothesis was that dietary NDF concentration would influence choline chloride effects on microbial ruminal fermentation. We used 8 fermentors in a duplicated 4 × 4 Latin square with a 2 × 2 factorial arrangement, combining 2 factors: (1) dietary NDF concentration and (2) unprotected choline chloride supplementation. Resulting treatments are (1) 30%NDF/Ctrl [30% NDF control diet without supplemental choline (Cho)]; (2) 30%NDF/Cho [30% NDF diet plus 1.9 g of choline ion per kg of dry matter (DM)]; (3) 40%NDF/Ctrl (40% NDF control diet without supplemental choline); and (4) 40%NDF/Cho (40% NDF diet plus 1.9 g of choline ion per kg of DM). Four 10-d periods were completed, each consisting of 7 d for adaptation and 3 d for collection of samples for estimation of nutrient disappearance and daily average concentrations of volatile fatty acids and NH3-N. In addition, kinetics of pH, acetate, and propionate were evaluated at 0, 1, 2, 4, 6, and 8 h after morning feeding. On the last day of each period, bacteria pellets were harvested for 15N analysis and N metabolism. Fixed effects of dietary NDF concentration, unprotected choline chloride supplementation, and their interaction (NDF × Cho) were tested using the MIXED procedure of SAS version 9.4 (SAS Institute Inc., Cary, NC). Choline tended to increase total volatile fatty acid concentrations and decreased acetate molar proportion regardless of dietary NDF concentration, but it increased propionate molar proportion and decreased acetate to propionate ratio only with the 30% NDF diet. Supplementing choline decreased NDF disappearance regardless of dietary NDF; however, organic matter disappearance tended to be reduced only when choline was added to 40% NDF. Our data indicate that unprotected choline chloride effects on ruminal fermentation depend on dietary NDF concentration, allowing for a greater propionate synthesis without decreasing organic matter disappearance when fed with a 30% NDF diet.


Subject(s)
Detergents , Rumen , Animal Feed/analysis , Animals , Choline/metabolism , Detergents/metabolism , Diet/veterinary , Dietary Fiber/metabolism , Digestion , Fermentation , Rumen/metabolism
13.
J Dairy Sci ; 103(8): 7068-7080, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32505403

ABSTRACT

Undesirable interactions between trace mineral elements and ruminal contents may occur during digestion when mineral salts are supplemented. Antimicrobial effects of copper sulfate (CuSO4) may affect ruminal digestibility of nutrients when fed as a source of copper (Cu), while sodium selenite (Na2SeO3) may be reduced in the rumen to less available forms of selenium (Se). Our objective was to evaluate if protection of CuSO4 and Na2SeO3 by lipid-microencapsulation would induce changes on ruminal microbial fermentation. We used 8 fermentors in a dual-flow continuous-culture system in a 4 × 4 duplicated Latin square with a 2 × 2 factorial arrangement of treatments. Factors were CuSO4 protection (unprotected and protected by lipid-microencapsulation) and Na2SeO3 protection (unprotected and protected by lipid-microencapsulation). Treatments consisted of supplementation with 15 mg/kg of Cu and 0.3 mg/kg of Se from either unprotected or protected (lipid-microencapsulated) sources, as follows: (1) Control (unprotected CuSO4 + unprotected Na2SeO3); (2) Cu-P (protected CuSO4 + unprotected Na2SeO3); (3) Se-P (unprotected CuSO4 + protected Na2SeO3); (4) (Cu+Se)-P (protected CuSO4 + protected Na2SeO3). All diets had the same nutrient composition and fermentors were fed 106 g of dry matter/d. Each experimental period was 10 d (7 d of adaptation and 3 d for sample collections). Daily pooled samples of effluents were analyzed for pH, NH3-N, nutrient digestibility, and flows (g/d) of total N, NH3-N, nonammonia N (NAN), bacterial N, dietary N, and bacterial efficiency. Kinetics of volatile fatty acids was analyzed in samples collected daily at 0, 1, 2, 4, 6, and 8 h after feeding. Main effects of Cu protection, Se protection, and their interaction were tested for all response variables. Kinetics data were analyzed as repeated measures. Protection of Cu decreased acetate molar proportion, increased butyrate proportion, and tended to decrease acetate:propionate ratio in samples of kinetics, but did not modify nutrient digestibility. Protection of Se tended to decrease NH3-N concentration, NH3-N flow, and CP digestibility; and to increase flows of nonammonia N and dietary N. Our results indicate that protection of CuSO4 may increase butyrate concentration at expenses of acetate, while protection of Na2SeO3 tended to reduce ruminal degradation of N. Further research is needed to determine the effects of lipid-microencapsulation on intestinal absorption, tissue distribution of Cu and Se, and animal performance.


Subject(s)
Bacteria/drug effects , Cattle/physiology , Copper Sulfate/administration & dosage , Dietary Supplements/analysis , Fatty Acids, Volatile/metabolism , Sodium Selenite/administration & dosage , Animal Feed/analysis , Animals , Bacteria/metabolism , Bioreactors/veterinary , Cattle/microbiology , Culture Techniques/veterinary , Diet/veterinary , Digestion , Drug Compounding/veterinary , Female , Fermentation/drug effects , Lipids/chemistry , Nutrients/metabolism , Rumen/metabolism , Rumen/microbiology , Trace Elements/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...